iss_preprocess.io package¶
Submodules¶
iss_preprocess.io.load module¶
- iss_preprocess.io.load.find_roi_position_on_cryostat(data_path)¶
Find the A/P position of each ROI relative to the first collected slice
The section order is guess from the sign of section_thickness_um, positive for antero-posterior slicing (starting from the olfactory bulb), negative for opposite.
- Parameters:
data_path (str) – Relative path to the data
- Returns:
- For each ROI, the slice depth in um relative to the
first collected slice
min_step (float): Minimum thickness between two slices
- Return type:
roi_slice_pos_um (dict)
- iss_preprocess.io.load.get_channel_round_transforms(data_path, prefix, tile_coors=None, shifts_type='best', load_file=True)¶
Load the channel and round shifts for a given tile and sequencing acquisition.
- Parameters:
data_path (str) – Relative path to data.
prefix (str) – Prefix of the sequencing round.
tile_coors (tuple, optional) – Coordinates of the tile to process. Required if shifts_type is not reference. Defaults to None.
corrected_shifts (str, optional) – Which shift to use. One of reference, single_tile, ransac, or best. Defaults to best.
load_file (bool, optional) – Whether to load the shifts from file or just return the file name. Defaults to True.
- Returns:
Array of channel and round shifts if load_file, else the path
- Return type:
np.ndarray | Path
- iss_preprocess.io.load.get_pixel_size(data_path, prefix='genes_round_1_1')¶
Get pixel size from MicroManager metadata.
- Parameters:
data_path (str) – Relative path to data.
prefix (str, optional) – Which acquisition prefix to use. Defaults to “genes_round_1_1”.
- Returns:
Pixel size in microns
- Return type:
float
- iss_preprocess.io.load.get_processed_path(data_path)¶
Return the path to the processed data.
- Parameters:
data_path (str) – Relative path to data
- Returns:
Path to processed data
- Return type:
pathlib.Path
- iss_preprocess.io.load.get_raw_filename(data_path, prefix, tile_coors)¶
Return the root name of raw data for a tile.
Raw file names may take on different patterns depending on micromanager version.
- Parameters:
data_path (str) – Relative path to data
prefix (str) – Prefix of acquisition to load
tile_coors (tuple) – Tile coordinates (roi, xpos, ypos)
- Returns:
Root name of the raw data file
- Return type:
str
- iss_preprocess.io.load.get_raw_path(data_path)¶
Return the path to the raw data.
- Parameters:
data_path (str) – Relative path to data
- Returns:
Path to raw data
- Return type:
pathlib.Path
- iss_preprocess.io.load.get_roi_dimensions(data_path, prefix=None, save=True)¶
Find imaging ROIs and determine their dimensions.
The output is the maximum index of the file names, which are 0 based. It is therefore the number of tiles in each dimension minus 1.
Create and/or load f”{prefix}_roi_dims.npy”. The default (None for ops[‘reference_prefix’]) should be used for all acquisitions that have the same ROI dimensions (everything except overviews).
- Parameters:
data_path (str) – Relative path to data
prefix (str, optional) – Prefix of acquisition to load. Defaults to None.
save (bool, optional) – If True save roi dimensions if they are not already found on disk. Default to True
- Returns:
- Nroi x 3 array of containing (roi_id, NtilesX, NtilesY) for each
roi
- Return type:
numpy.ndarray
- iss_preprocess.io.load.get_tile_ome(fname, fmetadata=None, use_indexmap=True)¶
Load OME TIFF tile.
- Parameters:
fname (str) – path to OME TIFF
fmetadata (str, optional) – path to OME metadata file. Required if use_indexmap is False or None. Defaults to None.
use_indexmap (bool, optional) – Whether to use the indexmap from micromanager metadata. If True, the metadata file is not required. Defaults to True.
- Returns:
X x Y x C x Z z-stack.
- Return type:
numpy.ndarray
- iss_preprocess.io.load.get_z_step(data_path, prefix='genes_round_1_1')¶
Get z step size from MicroManager metadata.
- Parameters:
data_path (str) – Relative path to data.
prefix (str, optional) – Which acquisition prefix to use. Defaults to “genes_round_1_1”.
- Returns:
Z step size in microns
- Return type:
float
- iss_preprocess.io.load.get_zprofile(data_path, prefix, tile_coords)¶
Load the zprofile for a tile
- Parameters:
data_path (str) – Relative path to data
prefix (str) – Prefix of acquisition to load
tile_coords (tuple) – Tile coordinates (roi, xpos, ypos)
- Returns:
Z profile for the tile, with ‘std’ and ‘top_1permille’ keys
- Return type:
dict
- iss_preprocess.io.load.load_correction_image(data_path, projection, prefix, corr_prefix=None)¶
Load the image for illumination correction
By default, find the appropriate correction image from the ops file. This can be overridden by providing a corr_prefix.
- Parameters:
data_path (str) – Relative path to dataset.
projection (str) – Projection to use, one of max, median.
prefix (str) – Prefix to correct, this is the image you want to correct, not the one you use for the correction.
corr_prefix (str, optional) – Prefix of the image to use for correction. If provided, this is used instead of the prefix. Defaults to None.
- Returns:
X x Y x channels stack.
- Return type:
numpy.ndarray
- iss_preprocess.io.load.load_hyb_probes_metadata()¶
Load the hybridisation probes metadata.
- Returns:
Contents of hybridisation_probes.yml
- Return type:
dict
- iss_preprocess.io.load.load_mask_by_coors(data_path, prefix, tile_coors, suffix='corrected')¶
Load masks for a single tile.
If the corrected mask is not found, the raw mask is loaded instead.
- Parameters:
data_path (str) – relative path to dataset.
prefix (str) – Full folder name prefix, including round number.
tile_coors (tuple) – Coordinates of tile to load: ROI, Xpos, Ypos.
suffix (str, optional) – Suffix to add to the file name. Defaults to “corrected”.
- Returns:
X x Y x channels stack.
- Return type:
numpy.ndarray
- iss_preprocess.io.load.load_metadata(data_path)¶
Load the metadata.yml file
This is the user generated file containing ROI and rounds information
- Parameters:
data_path (str) – Relative path to data
- Returns:
Content of {chamber}_metadata.yml
- Return type:
dict
- iss_preprocess.io.load.load_micromanager_metadata(data_path, prefix)¶
Load the metadata.txt of a single acquisition round
This is the detailed metadata from the microscope.
- Parameters:
data_path (str) – Relative path to data
prefix (str) – Acquisition prefix, including round number if applicable
- Returns:
Content of the metadata file
- Return type:
metadata (dict)
- iss_preprocess.io.load.load_ops(data_path, warn_missing=True)¶
Load the ops.yaml file.
This must be manually generated first. If it is not found, the default options are used.
- Parameters:
data_path (str) – Relative path to data
warn_missing (bool, optional) – Whether to warn if the ops or metadata files are not found. Defaults to True.
- Returns:
Options, see config/defaults_ops.yaml for description
- Return type:
dict
- iss_preprocess.io.load.load_section_position(data_path)¶
Load the section position information
This is the same for all chambers and is contained in the parent folder of data_path
- Parameters:
data_path (str) – Relative path to dataset
- Returns:
Slice position info
- Return type:
pandas.DataFrame
- iss_preprocess.io.load.load_sequencing_rounds(data_path, tile_coors=(1, 0, 0), nrounds=7, suffix='max', prefix='genes_round', specific_rounds=None, correct_illumination=False)¶
Load processed tile images across rounds
- Parameters:
data_path (str) – relative path to dataset.
tile_coors (tuple, optional) – Coordinates of tile to load: ROI, Xpos, Ypos. Defaults to (1,0,0).
nrounds (int, optional) – Number of rounds to load. Used only if specific_rounds is None. Defaults to 7.
suffix (str, optional) – File name suffix. Defaults to ‘fstack’.
prefix (str, optional) – the folder name prefix, before round number. Defaults to “genes_round”
specific_round (list, optional) – if not None, specify which rounds must be loaded and ignores nrounds. Defaults to None
correct_illumination (bool, optional) – Whether to correct for illumination Defaults to False.
- Returns:
X x Y x channels x rounds stack.
- Return type:
numpy.ndarray
- iss_preprocess.io.load.load_stack(fname)¶
Load TIFF stack.
- Parameters:
fname (str) – path to TIFF
- Returns:
X x Y x Z stack
- Return type:
numpy.ndarray
- iss_preprocess.io.load.load_tile_by_coors(data_path, tile_coors=(1, 0, 0), suffix='max', prefix='genes_round_1_1', correct_illumination=False)¶
Load processed tile images
- Parameters:
data_path (str) – relative path to dataset.
tile_coors (tuple, optional) – Coordinates of tile to load: ROI, Xpos, Ypos. Defaults to (1,0,0).
suffix (str, optional) – File name suffix. Defaults to “fstack”.
prefix (str, optional) – Full folder name prefix, including round number. Defaults to “genes_round_1_1”
correct_illumination (bool, optional) – Whether to correct for illumination Defaults to False.
- Returns:
X x Y x channels stack. uint16 if not corrected, float otherwise.
- Return type:
numpy.ndarray
iss_preprocess.io.save module¶
- iss_preprocess.io.save.save_ome_tiff_pyramid(target, image, pixel_size, subresolutions=3, dtype='uint16', rescale=True, verbose=True, save_thumbnail=False)¶
Write single image plane as pyramidal ome-tiff
- Parameters:
target (str) – Path to tif file
image (np.array) – 2D array with 8-bit or 16-bit image data
pixel_size (float) – Pixel size in microns
subresolutions (int, optional) – Number of pyramid levels. Defaults to 3.
dtype (str, optional) – Image datatype, can be “uint16” or “uint8”. Defaults to “uint16”.
verbose (bool, optional) – Print progress. Defaults to True.
save_thumbnail (bool, optional) – Add a thumbnail image. Defaults to False.
- Returns:
Last level of the pyramid, most downsampled image
- Return type:
np.array
- iss_preprocess.io.save.write_stack(stack, fname, bigtiff=False, dtype='uint16', clip=True, compress=True)¶
Write a stack to file as a multipage TIFF
- Parameters:
stack (numpy.ndarray) – X x Y x … array (can have multiple channels / zplanes, etc.)
fname (str) – save path for the TIFF
bigtiff (bool, optional) – use bigtiff format. Default to False
dtype (str, optional) – datatype of the output image. Default to ‘uint16’
clip (bool, optional) – clip negative values before conversion. Default to True
compress (bool, optional) – compress the image using zlib, default to True