iss_preprocess.vis package¶
Submodules¶
iss_preprocess.vis.diagnostics module¶
- iss_preprocess.vis.diagnostics.adjacent_tiles_registration(data_path, prefix, roi, shifts, raw_shifts, xcorr_max, max_shift=20, min_corrcoef=0.5, max_delta_shift=30)¶
Save figure of tile registration for within acquisition stitching
see pipeline.stitch.register_within_acquisition for usage.
- Parameters:
data_path (str) – Relative path to data
prefix (str) – Prefix of acquisition
roi (int) – ROI number
shifts (np.array) – (tilex x tiley x 4) vector of shifts per tile
raw_shifts (np.array) – (tilex x tiley x 4) vector of raw shifts per tile
xcorr_max (np.array) – (tilex x tiley x 2) vector of max correlation per tile
max_shift (int) – Maximum shift to plot, in pixels (default 20)
min_corrcoef (float) – Minimum correlation coefficient to plot
- Returns:
Figure instance
- Return type:
plt.Figure
- iss_preprocess.vis.diagnostics.check_reg2ref_using_stitched(save_path, stitched_stack_reference, stitched_stack_target, ref_centers=None, trans_centers=None)¶
Check the registration to reference done on stitched images
- Parameters:
data_path (str) – Relative path to data
reg_prefix (str) – Prefix of the registered images
ref_prefix (str) – Prefix of the reference images
roi (int) – ROI to process
stitched_stack_reference (np.ndarray) – Stitched stack of the reference images
stitched_stack_target (np.ndarray) – Stitched stack of the registered images
ref_centers (np.ndarray) – Reference centers to plot. Defaults to None.
trans_centers (np.ndarray) – Transformed centers to plot. Defaults
- Returns:
Figure
- Return type:
plt.Figure
- iss_preprocess.vis.diagnostics.plot_affine_debug_images(debug_info, fig=None)¶
Plot debug images for affine registration
It will plot the correlation, shifts, affine predictions and residuals for each channel.
- Parameters:
debug_info (dict) – Dictionary containing debug information
fig (plt.Figure, optional) – Figure to plot into. Defaults to None, will create a new figure.
- Returns:
Figure instance
- Return type:
plt.Figure
- iss_preprocess.vis.diagnostics.plot_all_rounds(stack, view=None, channel_colors=None, grid=True, round_labels=None, fig=None, axes=None, vmin=None, vmax=None, legend_kwargs=None)¶
Plot all rounds of a stack in a grid
- Parameters:
stack (np.array) – Image stack to plot (x y z round)
view (np.array, optional) – View to plot. Defaults to None, full view.
channel_colors (list, optional) – List of colors for each channel. Defaults to None, which will use the default colors (r, g, m, c).
grid (bool, optional) – Whether to plot a grid. Defaults to True.
round_labels (list, optional) – List of round labels. Defaults to None, which will use “Round {iround}”.
fig (plt.Figure, optional) – Figure to plot into. Defaults to None, will create a new figure.
axes (list, optional) – List of axes to plot into. Defaults to None, will create new axes.
vmin (float, optional) – Minimum value for the colormap. Defaults to None.
vmax (float, optional) – Maximum value for the colormap. Defaults to None.
- Returns:
Figure instance np.array: RGB stack
- Return type:
plt.Figure
- iss_preprocess.vis.diagnostics.plot_correction_images(correction_images, grand_averages, figure_folder, verbose=True)¶
Plot average illumination correction images.
- Parameters:
correction_images (dict) – Dictionary containing image stacks.
grand_averages (list) – List of grand averages to plot.
figure_folder (pathlib.Path) – Path where to save the figures.
verbose (bool) – Print info about progress. Defaults to True
- iss_preprocess.vis.diagnostics.plot_registration_correlograms(data_path, prefix, figure_name, debug_dict)¶
- iss_preprocess.vis.diagnostics.plot_round_registration_diagnostics(reg_stack, target_folder, fname_base, view_window=200, round_labels=None)¶
Generate 3 diagnostics tools for the registration of a tile
A static figure showing the stack of all rounds
An animated figure showing the stack of all rounds
A stack of RGB images for fiji
- Parameters:
reg_stack (np.ndarray) – Registered stack of images
target_folder (pathlib.Path) – Folder to save the figures
fname_base (str) – Base name for the figures
view_window (int, optional) – Half size of the window to show in the figures. Defaults to 200.
- Returns:
None
- iss_preprocess.vis.diagnostics.plot_spot_sign_image(spot_image)¶
Plot the average spot sign image.
- Parameters:
spot_image – X x Y array of average spot sign values.
- iss_preprocess.vis.diagnostics.plot_tilestats_distributions(data_path, distributions, grand_averages, figure_folder)¶
Plot histogram of pixel values.
- Parameters:
data_path (str) – Relative path to data
distributions (dict) – Dictionary containing tilestats distributions of pixel values per image.
grand_averages (list) – List of grand averages to plot.
figure_folder (pathlib.Path) – Path where to save the figures.
camera_order (list) – Order list of camera as in ops[‘camera_order’]
iss_preprocess.vis.vis module¶
- iss_preprocess.vis.vis.add_bases_legend(channel_colors, transform=None, **kwargs)¶
Add legend for base colors to a plot.
- Parameters:
channel_colors (list) – list of colors for each channel.
transform (matplotlib.transforms.Transform) – transform for legend.
kwargs – additional keyword arguments for plt.text.
- iss_preprocess.vis.vis.animate_sequencing_rounds(stack, savefname, vmax=0.5, vmin=0, extent=((0, 2000), (0, 2000)), channel_colors=([1, 0, 0], [0, 1, 0], [1, 0, 1], [0, 1, 1]), axes_titles=None)¶
Animate sequencing rounds as RGB images amd save as an mp4 file.
- Parameters:
stack (ndarray) – X x Y x C x R stack or list of such stacks
savefname (str) – filename to save animation
vmax (float) – maximum value for each channel.
vmin (float) – minimum value for each channel.
extent (list) – extent of plot. [[xmin, xmax], [ymin, ymax]]
channel_colors (list) – list of colors for each channel. Default: red, green, magenta, cyan = ([1, 0, 0], [0, 1, 0], [1, 0, 1], [0, 1, 1])
axes_titles (list, optional) – list of titles for each stack
- iss_preprocess.vis.vis.make_lut(color, nlevels=256)¶
Create a look-up table by interpolating between (0,0,0) and provided color.
- Parameters:
color – the maximum RGB value for look-up table.
nlevels – number of LUT levels
- Returns:
nlevels x 3 matrix.
- iss_preprocess.vis.vis.plot_clusters(cluster_means, spot_colors, cluster_inds)¶
Plot the cluster means and spot colors for each channel.
- Parameters:
cluster_means – list of nch x nclusters cluster means.
spot_colors – round x channels x spots array of spot colors.
cluster_inds – list of arrays of cluster indices for each round.
- Returns:
list of figures
- Return type:
figs
- iss_preprocess.vis.vis.plot_gene_matrix(gene_df, cmap='inferno', vmax=2)¶
Plot matrix of gene expression after sorting rows and columns using hierarchical clustering.
- Parameters:
gene_df (DataFrame) – table of gene counts.
- iss_preprocess.vis.vis.plot_gene_templates(gene_dict, gene_names, BASES, nrounds=7, nchannels=4)¶
Plot gene templates.
- Parameters:
gene_dict (ndarray) – X x G matrix of gene templates. X = nrounds * nchannels
gene_names (list) – list of gene names
BASES (list) – list of base names
nrounds (int) – number of rounds. Default: 7
nchannels (int) – number of channels. Default: 4
- iss_preprocess.vis.vis.plot_sequencing_rounds(stack, vmax=0.5, extent=((0, 2000), (0, 2000)), channel_colors=([1, 0, 0], [0, 1, 0], [1, 0, 1], [0, 1, 1]))¶
Plot sequencing rounds as RGB images.
- Parameters:
stack (ndarray) – X x Y x C x R stack
vmax (float, optional) – maximum value for each channel. Default: 0.5
extent (list, optional) – extent of plot. [[xmin, xmax], [ymin, ymax]]. If None, use full image. Default: ((0, 2000), (0, 2000))
channel_colors (list, optional) – list of colors for each channel. Default: red, green, magenta, cyan = ([1, 0, 0], [0, 1, 0], [1, 0, 1], [0, 1, 1])
- iss_preprocess.vis.vis.plot_spot_called_base(spots, ax, iround, base_color=None, **kwargs)¶
Plot called base for each spot.
This will write a single base, as colored letter, for each spot at the given round.
- Parameters:
spots (DataFrame) – table of spots.
ax (matplotlib.axes.Axes) – axis to plot on.
iround (int) – round to plot.
base_color (dict, optional) – dictionary of base colors. Defaults to None.
kwargs – additional keyword arguments for plt.text.
- Returns:
None
- iss_preprocess.vis.vis.plot_spots(stack, spots, colors=[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [1.0, 0.0, 1.0], [0.0, 1.0, 1.0]], vmax=10000.0, vmin=500.0)¶
Visualize detected plots.
- Parameters:
stack – X x Y x C stack
spots – pandas.DataFrame of spot locations
colors – maximum RGB values for each channel.
vmax – maximum level for each channel
vmin – minimum level for each channel
- iss_preprocess.vis.vis.round_to_rgb(stack, iround, extent=None, channel_colors=([1, 0, 0], [0, 1, 0], [1, 0, 1], [0, 1, 1]), vmax=None, vmin=None)¶
Convert a single sequencing round to RGB image.
- Parameters:
stack (ndarray) – X x Y x C x R stack
iround (int) – sequencing round to visualize
extent (list, optional) – extent of plot. [[xmin, xmax], [ymin, ymax]] or None, in which case the full image is used. Default: None
channel_colors (list, optional) – list of colors for each channel. Default to red, green, magenta, cyan
vmax (float, optional) – maximum value for each channel.
vmin (float, optional) – minimum value for each channel.
- Returns:
RGB image.
- iss_preprocess.vis.vis.to_rgb(stack, colors, vmax=None, vmin=None)¶
Convert multichannel stack to RGB image.
- Parameters:
stack – X x Y x C stack.
colors – maximum RGB values for each channel.
vmax – maximum level for each channel
vmin – minimum level for each channel
- Returns:
X x Y x 3 RGB image